Come and be part of a global voice for wild plants and fungi
Fungi are crucial to nearly all life on Earth, but they are not given the recognition they deserve. Will you join our mission to change that?
Fungi are crucial to nearly all life on Earth, but they are not given the recognition and investment they deserve. Will you join our mission to change that?
Our corporate partners benefit from 35 years of experience in nature restoration so they can achieve real impact.
Become a Plantlife member today and together we will rebuild a world rich in plants and fungi
It’s not just humans and animals that have DNA in their cells, plants and fungi do too.
In fact, DNA barcoding can be used to identify plants, detect invasive species and help conservation work, as our Senior Ecological Advisor Sarah Shuttleworth explains.
Like all living organisms, plants and fungi have DNA (deoxyribonucleic acid) in their cells. DNA is the genetic code, which is the blueprint for genes, which gives an organism its specific characteristics. Different species will have a different DNA blueprint (with small variations within that as well) and these can help us tell species apart and see which ones are closely related.
I was recently offered a place on an exciting course to learn all about DNA barcoding and how it can help my work as a botanist.
Put simply, we can compare different DNA blueprints by comparing just a small section of the DNA sequence. This small section is referred to as the DNA barcode. There is a reference library which contains information about many species with their corresponding barcode.
In order to compare DNA barcodes of different species, the shortened sequence (region) needs to be the same region of the comparison species. However, which region you select to shorten and use for comparison is different depending on which type of organism you have. For example, all organisms within the animal kingdom are identified using the same specific DNA region, whilst all plants are identified using a different region.
The DNA region used for barcoding differs between kingdoms:
DNA barcoding relies on a region of DNA that varies significantly between different species to allow the different species to be identified.
First, we need to collect a tiny bit of plant and/or fungi samples for our study. We don’t need much, just a small amount to get the DNA. To get the DNA out, we cut really tiny pieces from the samples. Then, we put these pieces in a tube with a special liquid solution and smush them with a small tool to break the cells apart and release the DNA.
Next, we need to make lots of copies of the DNA which we do by using a special mix of certain chemicals (there are different special mixes for plants and fungi).
To check if we’ve done it right, we use a method called gel electrophoresis. This method is used to separate mixtures of DNA, RNA, or proteins to molecular size (you will see a nice clear line in the gel if it has been successful.) This helps us see if the DNA we extracted is good and whether we can send it to the lab. The lab will then send us the DNA sequence so it can be compared it to other sequences in a big database.
Using these DNA barcoding skills can help us in many ways, including identifying single species or a community of species.
It is quite a technical process but as local groups (mainly fungi recording organisations) are starting to invest in the kit, more people should be able to get involved in DNA barcoding.
I hadn’t had a chance to do anything like this since my first year at university and I was surprised about how much came flooding back to me. The course was a great opportunity to learn and refresh my skills, as well as meet other people with an interest in species identification and conservation.
After more practicing, we hope to use these skills to add to the genomic database and assist our own species recording accuracy.
In the future, perhaps Plantlife can utilise these skill sets for looking at species assemblages on our reserves or places we are hoping to maximise conservation efforts.
Volunteer biological recording group RoAM (Recorders of the Avalon Marshes) at Somerset Wetlands NNR (National Nature Reserve) organised the DNA barcoding course with funding from Natural England through the Natural Capital and Ecosystem Assessment Programme. I was offered a spot on this exciting course due to my work and contacts in a voluntary capacity with the North Somerset and Bristol Fungi Group.
Natural England: EDNA (Environmental DNA) approaches to environmental monitoring are incredibly valuable to Natural England’s work, but recognise their limitations, not least that some groups of fungi, lichen and invertebrates are poorly represented in genomic databases. By helping to train our highly skilled taxonomic recorders with DNA barcoding means better records and more effective eDNA outputs.
We will keep you updated by email about our work, news, campaigning, appeals and ways to get involved. We will never share your details and you can opt out at any time. Read our Privacy Notice.